skip to Main Content

power pivot to power bi

A Power BI Technique Mined from the Power Pivot Archives

Below, you will find one of our all-time favorite Power BI techniques. In the ten (yes ten) years we’ve been operating this site, we’ve written over 1,000 articles on Power BI.  Hard to imagine - even for us - but true.

Years ago, we first wrote up this technique in the context of Power Pivot – Power BI’s cousin and predecessor, which we like to call “Power BI in Excel.” 

Since the two products share the same brains (DAX and M), this technique is more relevant today than ever. Everything below is 100% legit for Power BI – the same data model “shape,” the same DAX, etc. – but now you can use it to power up your Power BI visuals, and not just PivotTables.  Enjoy! Smile

The other day I was working on an updated version of my Team Playcalling report, which, by the way, look FABULOUS with Slicers:

NFL PlayCalling in PowerPivot

Only problem with it was that it was taking 90 seconds to refresh.  Unacceptable.

Howie Dickerman and Marius Dumitru, two of the Superheroes of DAX at Microsoft, pointed out that my measures were using the FILTER function in places that were not necessary.

For instance:

  [New Measure] = [Original Measure] ( 

Can be rewritten without the FILTER function:

  [New Measure] = [Original Measure] ( 

When I switched over to using those expressions directly, rather than the FILTER function, my 90 second refresh time dropped to about 3 seconds.

That’s a pretty significant boost in DAX measure performance from a very simple change.

Why so much faster?

The explanation from Howie made a lot of sense.  When the PowerPivot engine is evaluating a measure, it already has to take filter context from the pivot itself – row fields, slicer selections, etc.

And since that’s pretty much the #1 use case for the engine, well, applying filter context to a measure is highly optimized and fast.

So it’s not a big deal for the engine to inject another filter like I have specified in the rewritten example – it gets treated much the same as if that filter came from the pivot, as if a slicer had been set to PlayType=”Pass”

But the FILTER function, on the other hand…  well, it creates a brand-new table in memory.  I know my example just filters by one column, but the FILTER function can do some pretty amazing things, dynamically responding to current context.

Because of that power, the FILTER function must either create or update that dynamic table for every cell in the pivot where FILTER is used.  I have 256 cells in this particular pivot (32 teams times 8 measures), and originally all of them used FILTER.  But given that some of my measures are based on other measures that aren’t displayed in the pivot, my actual cell count was even higher.

Now imagine what would happen in a pivot with 5,000 rows 🙂

Next Football Post:  Grading the Football Project  >>

Rob Collie

Rob Collie

One of the original engineering leaders behind Power BI and Power Pivot during his 14-year career at Microsoft, Rob Collie founded a consulting company in 2013 that is 100% devoted to “the new way forward” made possible by Power BI and its related technologies. Since 2013, PowerPivotPro has rapidly grown to become the leading firm in the industry, pioneering an agile, results-first methodology never before seen in the Business Intelligence space. A sought-after public speaker and author of the #1-selling Power BI book, Rob and his team would like to help you revolutionize your business and your career.

This Post Has 6 Comments
  1. ‘… Team Playcalling report…look fabulous.’ Really? I think you might be getting a visit from the chart police soon :).

Leave a Reply

Your email address will not be published. Required fields are marked *